Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 185: 114292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658072

RESUMO

The synthetic, non-renewable nature and harmful effects of plastic packaging have led to the synthesis of eco-friendly renewable bio-nanocomposite film. The present work was aimed at the formulation and characterization of bio-nanocomposite film using soybean meal protein, montmorillonite (MMT), and debittered kinnow peel powder. The composition of film includes protein isolate (5% w/v), glycerol (50% w/w), peel powder (20% w/w), and MMT (0.5-2.5% w/w). Incorporation of MMT in soybean meal protein-based film loaded with kinnow peel powder showed lesser solubility (16.76-26.32%), and swelling ability (142.77-184.21%) than the film prepared without MMT (29.41%, & 229.41%, respectively). The mechanical properties like tensile strength of nanocomposite film improved from 9.41 to 38.69% with the increasing concentration of MMT. The water vapor transmission rate of the nanocomposite film was decreased by 3.45-17.85% when the MMT concentration increased. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed no considerable change in the structural properties of the film after the addition of MMT. Differential scanning colorimeter analysis revealed the increment in melting temperature (85.33-92.67 °C) of the film with a higher concentration of MMT. Scanning electron microscopy analysis indicated an increased distributed area of MMT throughout the film at higher concentrations. The antimicrobial activity of the film was remarkably increased by 4.96-17.18% with the addition of MMT. The results obtained in the current work confirmed that MMT incorporation in soybean meal protein-based film can augment its properties and can be utilized for enhancing the storage period of food products.


Assuntos
Bentonita , Embalagem de Alimentos , Nanocompostos , Pós , Proteínas de Soja , Resistência à Tração , Bentonita/química , Nanocompostos/química , Proteínas de Soja/química , Embalagem de Alimentos/métodos , Glycine max/química , Solubilidade , Vapor
2.
J Food Sci ; 88(7): 2758-2779, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282624

RESUMO

Soy meal as an agro-industrial by-product produced by the soybean oil processing industry is rich in protein. To valorize soy meal, the present study was aimed at the optimization of soy protein isolate (SPI) extraction by ultrasound treatment, its characterization, and comparison with microwave, enzymatic, and conventionally extracted SPI. Maximum yield (24.17% ± 0.79%) and protein purity (91.6% ± 1.08%) of SPI were obtained at the optimized ultrasound extraction conditions of 15.38:1 (liquid-solid ratio), 51.85% (amplitude), 21.70°C (temperature), 3.49 s (pulse), and 11.01 min (time). The SPI extracted with ultrasound treatment showed a smaller particle size (27.24 ± 0.33 µm) as compared to that extracted with microwave, enzymatically, or conventional treatment. Functional characteristics, namely, water and oil binding capacity, emulsion properties, and foaming properties of ultrasonically extracted SPI were increased by 40%-50% as compared to SPI extracted with microwave treatment, enzymatically, or conventionally. Structural and thermal properties studied by Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning colorimeter showed amorphous, secondary structural change, and high thermal resistance of ultrasonically extracted SPI. Increased functionality of ultrasonically obtained SPI can enhance its application in the development of various new food products. PRACTICAL APPLICATION: Soybean meal is one of the richest sources of protein and has huge potential to lessen protein-based malnutrition. Most of the studies on soy protein extraction were found to be based on the conventional methods that yield less quantity of protein. Hence, ultrasound treatment which is one of the novel nonthermal techniques has been selected for the present work and optimized for soy protein extraction. The ultrasound treatment showed significant improvement in extraction yield, proximate composition, amino acids profile, and improvement of functional properties of SPI as compared to the conventional, microwave, and enzymatic methods which proved the novelty of the work. Hence, the ultrasound technique could be used to increase the applications of SPI for developing a wide range of food products.


Assuntos
Proteínas de Soja , Ultrassom , Proteínas de Soja/química , Micro-Ondas , Glycine max/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA